Progressive Ankylosis Protein (ANK) in Osteoblasts and Osteoclasts Controls Bone Formation and Bone Remodeling

نویسندگان

  • Hyon Jong Kim
  • Takeshi Minashima
  • Edward F McCarthy
  • Jeffrey A Winkles
  • Thorsten Kirsch
چکیده

The progressive ankylosis gene (ank) encodes a transmembrane protein that transports intracellular inorganic pyrophosphate (PP(i)) to the extracellular milieu. ank/ank mice, which express a truncated nonfunctional ANK, showed a markedly reduced bone mass, bone-formation rate, and number of tartrate-resistant acid phosphatase-positive (TRAP(+)) multinucleated osteoclasts. ANK function deficiency suppressed osteoblastic differentiation of ank/ank bone marrow stromal cells, as indicated by the decrease in the expression of bone marker genes, including osterix, reduced alkaline phosphatase activity, and mineralization. Runx2 gene expression levels were not altered. Conversely, overexpression of ANK in the preosteoblastic cell line MC3T3-E1 resulted in increased expression of bone marker genes, including osterix. Whereas runx2 expression was not altered in ANK-overexpressing MC3T3-E1 cells, runx2 transcriptional activity was increased. Extracellular PP(i) or P(i) stimulated osteoblastogenic differentiation of MC3T3-E1 cells or partially rescued delayed osteoblastogenic differentiation of ank/ank bone marrow stromal cells. A loss of PP(i) transport function ANK mutation also stimulated osteoblastogenic differentiation of MC3T3-E1 cells. Furthermore, ANK function deficiency suppressed the formation of multinucleated osteoclasts from ank/ank bone marrow cells cultured in the presence of macrophage colony-stimulating factor and receptor activator of nuclear factor-kappaB ligand. In conclusion, ANK is a positive regulator of osteoblastic and osteoclastic differentiation events toward a mature osteoblastic and osteoclastic phenotype.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Progressive ankylosis gene (ank) regulates osteoblast differentiation.

The progressive ankylosis gene (ank) is a transmembrane protein that transports intracellular pyrophosphate to the extracellular milieu. Human mutations of ank lead to craniometaphyseal dysplasia, a disease which is characterized by the overgrowth of craniofacial bones and osteopenia in long bones, suggesting that ANK plays a regulatory role in osteoblast differentiation. To determine the role ...

متن کامل

CHMP5 controls bone turnover rates by dampening NF-κB activity in osteoclasts

Physiological bone remodeling requires that bone formation by osteoblasts be tightly coupled to bone resorption by osteoclasts. However, relatively little is understood about how this coupling is regulated. Here, we demonstrate that modulation of NF-κB signaling in osteoclasts via a novel activity of charged multivesicular body protein 5 (CHMP5) is a key determinant of systemic rates of bone tu...

متن کامل

Mechanisms of TNF-α– and RANKL-mediated osteoclastogenesis and bone resorption in psoriatic arthritis

Psoriatic arthritis (PsA) is an inflammatory joint disease that can be distinguished from rheumatoid arthritis (RA) on the basis of unique clinical features, the absence of rheumatoid factor, and characteristic radiographic findings (1). Patients frequently develop focal inflammation at multiple sites, including skin, joints, and tendon-insertion sites or entheses (2). A notable propensity for ...

متن کامل

Conditional deletion of Bmpr1a in differentiated osteoclasts increases osteoblastic bone formation, increasing volume of remodeling bone in mice.

Bone undergoes remodeling consisting of osteoclastic bone resorption followed by osteoblastic bone formation throughout life. Although the effects of bone morphogenetic protein (BMP) signals on osteoblasts have been studied extensively, the function of BMP signals in osteoclasts has not been fully elucidated. To delineate the function of BMP signals in osteoclasts during bone remodeling, we del...

متن کامل

Regulation of Bone Metabolism

Bone is formed through the processes of endochondral and intramembranous ossification. In endochondral ossification primary mesenchymal cells differentiate to chondrocytes and then are progressively substituted by bone, while in intramembranous ossification mesenchymal stem cells (MSCs) differentiate directly into osteoblasts to form bone. The steps of osteogenic proliferation, differentiation,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2010